66 research outputs found

    An Improved Interactive Streaming Algorithm for the Distinct Elements Problem

    Full text link
    The exact computation of the number of distinct elements (frequency moment F0F_0) is a fundamental problem in the study of data streaming algorithms. We denote the length of the stream by nn where each symbol is drawn from a universe of size mm. While it is well known that the moments F0,F1,F2F_0,F_1,F_2 can be approximated by efficient streaming algorithms, it is easy to see that exact computation of F0,F2F_0,F_2 requires space Ω(m)\Omega(m). In previous work, Cormode et al. therefore considered a model where the data stream is also processed by a powerful helper, who provides an interactive proof of the result. They gave such protocols with a polylogarithmic number of rounds of communication between helper and verifier for all functions in NC. This number of rounds (O(log2m)  in the case of  F0)\left(O(\log^2 m) \;\text{in the case of} \;F_0 \right) can quickly make such protocols impractical. Cormode et al. also gave a protocol with logm+1\log m +1 rounds for the exact computation of F0F_0 where the space complexity is O(logmlogn+log2m)O\left(\log m \log n+\log^2 m\right) but the total communication O(nlogm(logn+logm))O\left(\sqrt{n}\log m\left(\log n+ \log m \right)\right). They managed to give logm\log m round protocols with polylog(m,n)\operatorname{polylog}(m,n) complexity for many other interesting problems including F2F_2, Inner product, and Range-sum, but computing F0F_0 exactly with polylogarithmic space and communication and O(logm)O(\log m) rounds remained open. In this work, we give a streaming interactive protocol with logm\log m rounds for exact computation of F0F_0 using O(logm(logn+logmloglogm))O\left(\log m \left(\,\log n + \log m \log\log m\,\right)\right) bits of space and the communication is O(logm(logn+log3m(loglogm)2))O\left( \log m \left(\,\log n +\log^3 m (\log\log m)^2 \,\right)\right). The update time of the verifier per symbol received is O(log2m)O(\log^2 m).Comment: Submitted to ICALP 201

    Packing Returning Secretaries

    Full text link
    We study online secretary problems with returns in combinatorial packing domains with nn candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least 0.5721o(1)0.5721 - o(1) for growing nn, and an algorithm with ratio at least 0.54590.5459 for all n1n \ge 1. We extend all algorithms and ratios to k2k \ge 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(nlogn)\Theta(n \log n) is always sufficient. For matroids, we show that the expected number can be reduced to O(rlog(n/r))O(r \log (n/r)), where rn/2r \le n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of O(rlogn)O(r \log n), where rr is the size of the optimum matching. For general packing, we show a lower bound of Ω(nloglogn)\Omega(n \log \log n), even when the size of the optimum is r=Θ(logn)r = \Theta(\log n).Comment: 23 pages, 5 figure

    Assembling evidence for identifying reservoirs of infection

    Get PDF
    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems

    Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD

    Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation

    Get PDF
    Background The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites. Methods We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. Results We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. Conclusions We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.Geological Survey (U.S.) (Wildlife Program of the Ecosystem Mission Area)U.S. Fish and Wildlife ServiceDelta Waterfowl FoundationInstitute for Wetland and Waterfowl ResearchIcahn School of Medicine at Mount Sinai (Center for Research on Influenza Pathogenesis)Center of Excellence for Influenza Research and Surveillance (contracts HHSN272201400008C and HHSN266200700010C

    Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends

    Get PDF
    Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia
    corecore